Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

outline for loading old sleap config #162

Open
wants to merge 14 commits into
base: main
Choose a base branch
from

Conversation

gqcpm
Copy link
Contributor

@gqcpm gqcpm commented Mar 18, 2025

Summary by CodeRabbit

  • New Features
    • Introduced support for JSON configuration files, enabling users to set up training configurations using JSON format alongside existing options for greater flexibility.
    • Added functions to map legacy configurations for data, model, and trainer setups, streamlining the transition to the new configuration format.
    • Enhanced configuration handling with new mapping functions for data, model, and trainer configurations.
    • Added multiple new JSON configuration files for various training setups, including bottom-up, centered instance, centroid, single-instance, and top-down training.
  • Bug Fixes
    • Improved validation in the trainer_mapper function to ensure default values are correctly applied for unspecified parameters.
  • Tests
    • Added new test functions to validate the functionality of the trainer_mapper, model_mapper, and data_mapper functions, ensuring correct configuration outputs.
    • Introduced tests for loading configurations from JSON files, verifying that the loaded settings match expected values.
    • Added dataset fixtures to support organized access to test data and configuration files during unit tests.

Copy link
Contributor

coderabbitai bot commented Mar 18, 2025

Walkthrough

This change introduces four new functions across different configuration modules: load_sleap_config in training_job_config.py, data_mapper in data_config.py, model_mapper in model_config.py, and trainer_mapper in trainer_config.py. The load_sleap_config function reads and processes a JSON configuration file, while the other three functions convert legacy configuration dictionaries into structured configuration objects. These updates enhance the ability to handle JSON configurations alongside existing YAML formats.

Changes

File Change Summary
sleap_nn/config/…/training_job_config.py Added load_sleap_config function for loading and processing JSON configuration; introduced imports for json and mapping functions.
sleap_nn/config/…/data_config.py Added data_mapper function to convert legacy configuration dictionary to DataConfig instance; updated skeletons type.
sleap_nn/config/…/model_config.py Added model_mapper function to convert legacy configuration dictionary to ModelConfig instance.
sleap_nn/config/…/trainer_config.py Added trainer_mapper function to convert legacy configuration dictionary to TrainerConfig instance.
tests/config/…/test_trainer_config.py Added test_trainer_mapper function to validate trainer_mapper functionality; removed unused import statement.
tests/config/…/test_model_config.py Added test_model_mapper function to validate model_mapper functionality.
tests/config/…/test_data_config.py Added test_data_mapper function to validate data_mapper functionality.
tests/assets/fixtures/…/datasets.py Introduced dataset fixtures for unit testing, including paths for data and configuration files.
tests/assets/…/training_config.json Created new JSON configuration file with settings for data, model, optimization, and outputs.
tests/config/…/test_training_job_config.py Added multiple test functions to validate loading various training job configurations from JSON files.
tests/assets/…/bottomup_training_config.json Created new JSON configuration file for bottom-up training setup.
tests/assets/…/centered_instance_training_config.json Created new JSON configuration file for centered instance training.
tests/assets/…/centered_instance_with_scaling_training_config.json Created new JSON configuration file for centered instance training with scaling.
tests/assets/…/centroid_training_config.json Created new JSON configuration file for centroid training setup.
tests/assets/…/single_instance_training_config.json Created new JSON configuration file for single-instance training setup.
tests/assets/…/topdown_training_config.json Created new JSON configuration file for top-down training setup.

Possibly related issues

Possibly related PRs

Suggested reviewers

  • talmo: Suggested for review based on expertise in configuration management.

Poem

I hopped through lines of code with glee,
A JSON file beckoned, as clear as could be.
Mapping data, model, and trainer so neat,
My config now sings a rhythmic beat!
Hop on the branch, and enjoy this treat! 🐇✨

✨ Finishing Touches
  • 📝 Generate Docstrings

🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai plan to trigger planning for file edits and PR creation.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 4

🧹 Nitpick comments (3)
sleap_nn/config/training_job_config.py (3)

154-162: Missing docstring for new function

Unlike other functions in this file, load_sleap_config lacks a docstring describing its purpose, parameters, and return value.

Add a descriptive docstring:

def load_sleap_config(cls, json_file_path: str) -> TrainerConfig:
+    """Load a training job configuration from a legacy SLEAP JSON config file.
+
+    Arguments:
+        json_file_path: Path to a legacy SLEAP JSON configuration file.
+
+    Returns:
+        A TrainingJobConfig instance containing the mapped configuration data.
+    """
    with open(json_file_path, "r") as f:
        old_config = json.load(f)

158-161: Missing error handling for mapper functions

There's no error handling for potential exceptions in the mapper functions.

Add error handling for the mapper functions:

-    data_config = data_mapper(old_config)
-    model_config = model_mapper(old_config)
-    trainer_config = trainer_mapper(old_config)
+    try:
+        data_config = data_mapper(old_config)
+        model_config = model_mapper(old_config)
+        trainer_config = trainer_mapper(old_config)
+    except Exception as e:
+        raise ValueError(f"Failed to map configuration from {json_file_path}: {str(e)}")

162-162: Filename attribute not set in the created config

Unlike the YAML loading methods, this function doesn't set the filename attribute to the source file path.

Set the filename attribute in the returned config:

-    return cls(data_config=data_config, model_config=model_config, trainer_config=trainer_config)
+    return cls(
+        data_config=data_config, 
+        model_config=model_config, 
+        trainer_config=trainer_config,
+        filename=json_file_path
+    )
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 34aa25d and 53345e4.

📒 Files selected for processing (1)
  • sleap_nn/config/training_job_config.py (2 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint

Comment on lines 155 to 157
with open(json_file_path, "r") as f:
old_config = json.load(f)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Missing error handling for file operations and JSON parsing

The function doesn't handle potential exceptions when opening the file or parsing the JSON content.

Add error handling for file operations and JSON parsing:

-    with open(json_file_path, "r") as f:
-        old_config = json.load(f)
+    try:
+        with open(json_file_path, "r") as f:
+            old_config = json.load(f)
+    except FileNotFoundError:
+        raise FileNotFoundError(f"Configuration file not found: {json_file_path}")
+    except json.JSONDecodeError:
+        raise ValueError(f"Invalid JSON in configuration file: {json_file_path}")
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
with open(json_file_path, "r") as f:
old_config = json.load(f)
try:
with open(json_file_path, "r") as f:
old_config = json.load(f)
except FileNotFoundError:
raise FileNotFoundError(f"Configuration file not found: {json_file_path}")
except json.JSONDecodeError:
raise ValueError(f"Invalid JSON in configuration file: {json_file_path}")

model_config = model_mapper(old_config)
trainer_config = trainer_mapper(old_config)

return cls(data_config=data_config, model_config=model_config, trainer_config=trainer_config)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Verification agent

🧩 Analysis chain

Missing validation for loaded configuration

The function doesn't apply the check_output_strides validation that's performed in the YAML loading methods.

Consider whether the check_output_strides validation should be applied to JSON loaded configurations as well. This validation ensures compatibility between backbone and head configurations.


🏁 Script executed:

#!/bin/bash
# Check if check_output_strides is applied in any other loaders
grep -rn "check_output_strides" --include="*.py" ./

Length of output: 379


Action Required: Apply Missing check_output_strides Validation in JSON Loading

It appears that the JSON configuration loading path in sleap_nn/config/training_job_config.py (culminating in the return statement at line 162) does not invoke the check_output_strides validation. In contrast, YAML loaders in this file call TrainingJobConfig.check_output_strides(config) (as seen on lines 99 and 117). For consistency and to ensure compatibility between backbone and head configurations, please consider applying the same validation for JSON-loaded configurations.

  • Evaluate adding a call to TrainingJobConfig.check_output_strides(config) right before the instance initialization in the JSON loader.
  • Confirm that this adjustment aligns with the intended configuration compatibility checks across all loaders.

@@ -146,3 +150,13 @@
The parsed `OmegaConf`.
"""
return TrainingJobConfig.load_yaml(filename)

def load_sleap_config(cls, json_file_path: str) -> TrainerConfig:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Function lacks classmethod decorator despite using cls parameter

This function appears to be intended as a class method since it takes cls as its first parameter, but it's missing the @classmethod decorator and is defined at module level rather than within the TrainingJobConfig class.

Consider moving this function into the TrainingJobConfig class and adding the @classmethod decorator:

-def load_sleap_config(cls, json_file_path: str) -> TrainerConfig:
+@classmethod
+def load_sleap_config(cls, json_file_path: str) -> "TrainingJobConfig":

Committable suggestion skipped: line range outside the PR's diff.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 53345e4 and 369dcff.

📒 Files selected for processing (2)
  • sleap_nn/config/data_config.py (1 hunks)
  • sleap_nn/config/model_config.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (1)
sleap_nn/config/data_config.py (1)

215-221:

✅ Verification successful

Verify the probability values for augmentation configuration

The probability values (uniform_noise_p, gaussian_noise_p, contrast_p) are set to default values of 1.0, but the base class IntensityConfig defines them with defaults of 0.0. Additionally, validation for these fields ensures they are between 0.0 and 1.0.

Verify whether the default values of 1.0 from the legacy configuration are correct. This seems inconsistent with the class definitions where these probabilities default to 0.0, suggesting they might not be applied by default.


🏁 Script executed:

#!/bin/bash
# Check if there's any precedent in the codebase for using 1.0 as default probability
rg -A 2 -B 2 "noise_p|contrast_p|brightness_p"

Length of output: 32418


Legacy augmentation probability defaults confirmed

After reviewing the legacy configuration across the codebase and corresponding tests, it appears that the default values of 1.0 for uniform_noise_p, gaussian_noise_p, and contrast_p in the legacy configuration are intentional. Although the base class (IntensityConfig) defaults these probabilities to 0.0 and enforces a [0.0, 1.0] range, the legacy branch explicitly overrides them to 1.0—as validated by tests in files like tests/test_train.py and tests/data/test_augmentation.py. To avoid future confusion, consider documenting this intentional behavior and noting the divergence from the new defaults.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

♻️ Duplicate comments (1)
sleap_nn/config/data_config.py (1)

189-243: ⚠️ Potential issue

Inconsistency in parameter handling

The function implementation has several issues that need to be addressed:

  1. Many parameters are commented out (lines 191-201) including critical path parameters like train_labels_path and val_labels_path which are marked as MISSING in the DataConfig class.
  2. Line 210 comments out use_augmentations_train, but it's used in the conditional at line 241.
  3. The structure of the legacy_config appears inconsistent with some values coming from data.preprocessing and others from optimization.augmentation_config.
def data_mapper(legacy_config: dict) -> DataConfig:
    return DataConfig(
-        # train_labels_path=legacy_config.get("train_labels_path", MISSING),
-        # val_labels_path=legacy_config.get("val_labels_path", MISSING),
+        train_labels_path=legacy_config.get("train_labels_path", MISSING),
+        val_labels_path=legacy_config.get("val_labels_path", MISSING),
        # test_file_path=legacy_config.get("test_file_path"),
        # provider=legacy_config.get("provider", "LabelsReader"),
        # user_instances_only=legacy_config.get("user_instances_only", True),
        # data_pipeline_fw=legacy_config.get("data_pipeline_fw", "torch_dataset"),
        # np_chunks_path=legacy_config.get("np_chunks_path"),
        # litdata_chunks_path=legacy_config.get("litdata_chunks_path"),
        # use_existing_chunks=legacy_config.get("use_existing_chunks", False),
        # chunk_size=int(legacy_config.get("chunk_size", 100)),
        # delete_chunks_after_training=legacy_config.get("delete_chunks_after_training", True),
        preprocessing=PreprocessingConfig(
            is_rgb=legacy_config.get("data", {}).get("preprocessing", {}).get("ensure_rgb", False),
            max_height=legacy_config.get("data", {}).get("preprocessing", {}).get("target_height"),
            max_width=legacy_config.get("data", {}).get("preprocessing", {}).get("target_width"),
            scale=legacy_config.get("data", {}).get("preprocessing", {}).get("input_scaling", 1.0),
            crop_hw=legacy_config.get("data", {}).get("preprocessing", {}).get("crop_size"),
            min_crop_size=legacy_config.get("data", {}).get("preprocessing", {}).get("crop_size_detection_padding", 100),
        ),
-        # use_augmentations_train=legacy_config.get("use_augmentations_train", False),
+        use_augmentations_train=legacy_config.get("use_augmentations_train", False),
        augmentation_config=AugmentationConfig(
            intensity=IntensityConfig(
                uniform_noise_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("uniform_noise_min_val", 0.0),
🧹 Nitpick comments (1)
sleap_nn/config/data_config.py (1)

189-190: Add docstring to data_mapper function

The data_mapper function lacks a docstring to explain its purpose, parameters, and return value. This is important for maintainability and understanding the code's intent.

+"""
+Convert a legacy SLEAP configuration dictionary to a DataConfig object.
+
+Args:
+    legacy_config: Dictionary containing configuration from older SLEAP version
+
+Returns:
+    DataConfig: A structured configuration object matching the legacy settings
+"""
def data_mapper(legacy_config: dict) -> DataConfig:
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 369dcff and 5649f45.

📒 Files selected for processing (1)
  • sleap_nn/config/data_config.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (2)
sleap_nn/config/data_config.py (2)

222-224: Fixed brightness tuple creation

The brightness tuple is now correctly created using parentheses, fixing the syntax error from the previous review.


213-221:

❓ Verification inconclusive

Inconsistent default values for noise and contrast parameters

The default values for noise and contrast parameters don't match the class defaults. The class defaults are:

  • uniform_noise_p: 0.0 in class, 1.0 in mapper
  • gaussian_noise_p: 0.0 in class, 1.0 in mapper
  • contrast_p: 0.0 in class, 1.0 in mapper

Please verify if these different default values are intentional or if they should match the class defaults.


🏁 Script executed:

#!/bin/bash
# Check where these values are used elsewhere in the codebase
echo "Searching for uniform_noise, gaussian_noise, and contrast default usages:"
rg --type py "uniform_noise|gaussian_noise|contrast.*p" -A 2 -B 2

Length of output: 34468


Action Required: Verify Default Augmentation Parameter Values

The legacy configuration mapper in sleap_nn/config/data_config.py is currently defaulting the following parameters to 1.0:

  • uniform_noise_p
  • gaussian_noise_p
  • contrast_p

However, the corresponding defaults defined in the augmentation module (sleap_nn/data/augmentation.py) are 0.0 for these parameters. This discrepancy may lead to inconsistent augmentation behavior depending on whether values come from the legacy config or are used directly from the class defaults. Some tests (e.g., in tests/test_train.py and tests/data/test_augmentation.py) appear to expect a default of 1.0 when augmentations are explicitly enabled, while the augmentation module itself defines a “disabled” default of 0.0.

Please verify whether the legacy mapping defaults are intended to override the class defaults. If the intended behavior is to have augmentations off by default, update the mapper in sleap_nn/config/data_config.py to use 0.0 (matching the class defaults). Otherwise, if the legacy behavior (defaulting to 1.0) is deliberate, ensure that the discrepancies are well documented and that the tests reflect this intended behavior.

Comment on lines 226 to 240
geometric=GeometricConfig(
rotation=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("rotation_max_angle", 180.0),
scale=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", None),
legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", None)),
# translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
# translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
# affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
# erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
# erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
# erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
# erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
# erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
# mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
# mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),
)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

🛠️ Refactor suggestion

Potential issues with geometric configuration parameters

There are several issues with the geometric configuration section:

  1. The scale parameter uses None as potential values which might conflict with the validator in the GeometricConfig class
  2. Most parameters are commented out without a clear indication why
  3. The rotation parameter uses a different default (180.0) compared to the class default (15.0)
            geometric=GeometricConfig(
                rotation=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("rotation_max_angle", 180.0),
-                scale=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", None),
-                       legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", None)),
+                scale=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", 0.9),
+                       legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", 1.1)),
                # translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
                # translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),

Consider adding a comment to explain why most of these parameters are commented out, or uncomment them if they should be included.

📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
geometric=GeometricConfig(
rotation=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("rotation_max_angle", 180.0),
scale=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", None),
legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", None)),
# translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
# translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
# affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
# erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
# erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
# erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
# erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
# erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
# mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
# mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),
)
geometric=GeometricConfig(
rotation=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("rotation_max_angle", 180.0),
scale=(legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", 0.9),
legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", 1.1)),
# translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
# translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
# affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
# erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
# erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
# erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
# erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
# erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
# mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
# mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),
)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

♻️ Duplicate comments (2)
sleap_nn/config/model_config.py (1)

906-917: ⚠️ Potential issue

Always creating centroid head violates one-of semantics.

Because centroid is set unconditionally, it will be active alongside any other head, contradicting the @oneof policy that only one head can be non-None. Wrap this in a condition to ensure that we only create the centroid head if head_type is set to "centroid".

-            centroid=CentroidConfig(
+            centroid=(
+                CentroidConfig(
+                    confmaps=CentroidConfMapsConfig(
+                        anchor_part=legacy_config.get("heads", {})
+                        .get("centroid", {})
+                        .get("anchor_part"),
+                        sigma=legacy_config.get("heads", {})
+                        .get("centroid", {})
+                        .get("sigma", 5.0),
+                        output_stride=legacy_config.get("heads", {})
+                        .get("centroid", {})
+                        .get("output_stride", 1),
+                    )
+                )
+                if legacy_config.get("head_type") == "centroid"
+                else None
+            ),
sleap_nn/config/data_config.py (1)

270-277: ⚠️ Potential issue

Scale set to (None, None) may break validation logic.

By default, GeometricConfig.scale expects numeric tuples (e.g., (0.9, 1.1)). Using (None, None) can trigger type errors or produce unintended outcomes. Provide valid numeric values if you want to enable scaling, or set this to None if scaling is not used.

-   scale=(
-       legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", None),
-       legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", None),
-   ),
+   scale=(
+       legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_min", 0.9),
+       legacy_config.get("optimization", {}).get("augmentation_config", {}).get("scale_max", 1.1),
+   ),
🧹 Nitpick comments (2)
sleap_nn/config/model_config.py (1)

835-836: Remove or clarify leftover comment.

These lines appear to contain a partial or uncertain comment about pretrained_backbone_weights (e.g., )?? # i think its different). This can be confusing to future maintainers. Consider removing or clarifying these comments to ensure the code is clean and unambiguous.

-        # pretrained_backbone_weights=legacy_config.get("PretrainedEncoderConfig")?? # i think its different
+        # pretrained_backbone_weights=legacy_config.get("PretrainedEncoderConfig")  # Clarify if needed or remove entirely
sleap_nn/config/data_config.py (1)

223-224: use_augmentations_train is commented out, causing mismatch.

The DataConfig instance sets use_augmentations_train to its default False, even if legacy_config indicates otherwise. Uncomment and map use_augmentations_train from legacy_config to keep the final config in sync.

-        # use_augmentations_train=legacy_config.get("use_augmentations_train", False),
+        use_augmentations_train=legacy_config.get("use_augmentations_train", False),
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 5649f45 and cdc2c99.

📒 Files selected for processing (3)
  • sleap_nn/config/data_config.py (1 hunks)
  • sleap_nn/config/model_config.py (1 hunks)
  • sleap_nn/config/training_job_config.py (2 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • sleap_nn/config/training_job_config.py
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (4)
sleap_nn/config/model_config.py (2)

837-842: Confirm usage of commented-out parameters.

In the returned ModelConfig, multiple parameters like init_weights and pre_trained_weights are commented out (lines 839-841). If these are intentionally omitted from legacy handling, consider removing them altogether. Otherwise, uncomment and map them from legacy_config to ensure backward compatibility.


889-905: Conditional creation for single_instance head looks good.

The code correctly creates a SingleInstanceConfig only when legacy_config.get("head_type") == "single_instance". This aligns with the @oneof requirement that only one head should be active.

sleap_nn/config/data_config.py (2)

190-202: Review whether commented-out fields should be restored or removed.

Several fields (e.g., train_labels_path, val_labels_path, etc.) are commented out, preventing them from being set in DataConfig. Verify if you need these fields for accurate data loading. If they are essential, uncomment and map them; otherwise, remove them to avoid confusion.


267-269: Rotation uses 180.0 by default, diverging from internal default of 15.0.

This large rotation range can significantly alter training behavior. If this is intentional, confirm it aligns with your training objectives. Otherwise, consider a smaller angle or the class default.

…ers, early_stopping, and commented out unspecified parameters
Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

🧹 Nitpick comments (6)
sleap_nn/config/trainer_config.py (6)

236-236: Add a docstring to the trainer_mapper function.

The function is missing documentation explaining its purpose, parameters, and return value. A docstring would improve maintainability and help other developers understand the function's role.

 def trainer_mapper(legacy_config: dict) -> TrainerConfig:
+    """Convert a legacy configuration dictionary to a TrainerConfig instance.
+
+    This function extracts values from a legacy SLEAP configuration dictionary
+    and maps them to the appropriate fields in the TrainerConfig structure.
+
+    Args:
+        legacy_config: A dictionary containing legacy configuration parameters.
+
+    Returns:
+        A TrainerConfig instance populated with values from the legacy config.
+    """
     return TrainerConfig(

243-246: Decide on commented-out code.

There are numerous commented-out sections throughout the function. These make the code harder to read and maintain. Either implement these sections if they're needed or remove them if they're not.

If these configurations are planned for future implementation, consider adding a TODO comment indicating this, or remove them entirely if they're not needed.


311-350: Simplify conditional configuration creation.

The conditional creation of lr_scheduler is complex and nested. Consider extracting this logic to a separate helper function to improve readability.

+        lr_scheduler=_create_lr_scheduler_from_legacy(legacy_config),
-        lr_scheduler=(
-            LRSchedulerConfig(
-                # step_lr=StepLRConfig(
-                #     step_size=legacy_config.get("optimization", {})
-                #     .get("lr_scheduler", {})
-                #     .get("step_lr", {})
-                #     .get("step_size", 10),
-                #     gamma=legacy_config.get("optimization", {})
-                #     .get("lr_scheduler", {})
-                #     .get("step_lr", {})
-                #     .get("gamma", 0.1),
-                # ) if legacy_config.get("optimization", {}).get("lr_scheduler", {}).get("scheduler") == "StepLR" else None,
-                reduce_lr_on_plateau=ReduceLROnPlateauConfig(
-                    # threshold=legacy_config.get("optimization", {})
-                    # .get("lr_scheduler", {})
-                    # .get("reduce_lr_on_plateau", {})
-                    # .get("threshold", 1e-4),
-                    # threshold_mode=legacy_config.get("optimization", {})
-                    # .get("lr_scheduler", {})
-                    # .get("reduce_lr_on_plateau", {})
-                    # .get("threshold_mode", "rel"),
-                    # cooldown=legacy_config.get("optimization", {})
-                    # .get("lr_scheduler", {})
-                    # .get("reduce_lr_on_plateau", {})
-                    # .get("cooldown", 0),
-                    patience=legacy_config.get("optimization", {})
-                    .get("learning_rate_schedule", {})
-                    .get("plateau_patience", 10),
-                    # factor=legacy_config.get("optimization", {})
-                    # .get("lr_scheduler", {})
-                    # .get("reduce_lr_on_plateau", {})
-                    # .get("factor", 0.1),
-                    min_lr=legacy_config.get("optimization", {})
-                    .get("learning_rate_schedule", {})
-                    .get("min_learning_rate", 0.0),
-                )
-            )
-            if legacy_config.get("optimization", {}).get("learning_rate_schedule")
-            else None
-        ),

And add this helper function above:

def _create_lr_scheduler_from_legacy(legacy_config: dict) -> Optional[LRSchedulerConfig]:
    """Create LRSchedulerConfig from legacy configuration.
    
    Args:
        legacy_config: A dictionary containing legacy configuration parameters.
        
    Returns:
        A LRSchedulerConfig instance or None if learning_rate_schedule is not specified.
    """
    optimization = legacy_config.get("optimization", {})
    learning_rate_schedule = optimization.get("learning_rate_schedule")
    
    if not learning_rate_schedule:
        return None
        
    return LRSchedulerConfig(
        reduce_lr_on_plateau=ReduceLROnPlateauConfig(
            patience=learning_rate_schedule.get("plateau_patience", 10),
            min_lr=learning_rate_schedule.get("min_learning_rate", 0.0),
        )
    )

351-365: Similar to the lr_scheduler, extract early_stopping config creation to a helper function.

The conditional creation of early_stopping follows the same pattern as lr_scheduler and could benefit from the same refactoring approach.

+        early_stopping=_create_early_stopping_from_legacy(legacy_config),
-        early_stopping=(
-            EarlyStoppingConfig(
-                stop_training_on_plateau=legacy_config.get("optimization", {})
-                .get("learning_rate_schedule", {})
-                .get("reduce_on_plateau", False),
-                min_delta=legacy_config.get("optimization", {})
-                .get("learning_rate_schedule", {})
-                .get("plateau_min_delta", 0.0),
-                patience=legacy_config.get("optimization", {})
-                .get("learning_rate_schedule", {})
-                .get("plateau_patience", 1),
-            )
-            if legacy_config.get("optimization", {}).get("learning_rate_schedule")
-            else None
-        ),

And add this helper function below the _create_lr_scheduler_from_legacy function:

def _create_early_stopping_from_legacy(legacy_config: dict) -> Optional[EarlyStoppingConfig]:
    """Create EarlyStoppingConfig from legacy configuration.
    
    Args:
        legacy_config: A dictionary containing legacy configuration parameters.
        
    Returns:
        An EarlyStoppingConfig instance or None if learning_rate_schedule is not specified.
    """
    optimization = legacy_config.get("optimization", {})
    learning_rate_schedule = optimization.get("learning_rate_schedule")
    
    if not learning_rate_schedule:
        return None
        
    return EarlyStoppingConfig(
        stop_training_on_plateau=learning_rate_schedule.get("reduce_on_plateau", False),
        min_delta=learning_rate_schedule.get("plateau_min_delta", 0.0),
        patience=learning_rate_schedule.get("plateau_patience", 1),
    )

236-366: Add input validation for the legacy_config parameter.

The function doesn't validate the input legacy_config parameter. Consider adding validation to ensure it's a dictionary and contains the expected structure.

Add validation at the beginning of the function:

 def trainer_mapper(legacy_config: dict) -> TrainerConfig:
+    """Convert a legacy configuration dictionary to a TrainerConfig instance.
+
+    This function extracts values from a legacy SLEAP configuration dictionary
+    and maps them to the appropriate fields in the TrainerConfig structure.
+
+    Args:
+        legacy_config: A dictionary containing legacy configuration parameters.
+
+    Returns:
+        A TrainerConfig instance populated with values from the legacy config.
+
+    Raises:
+        TypeError: If legacy_config is not a dictionary.
+    """
+    if not isinstance(legacy_config, dict):
+        raise TypeError("legacy_config must be a dictionary")
+
     return TrainerConfig(

236-366: Consider using dictionary access helpers to simplify deeply nested dictionary accesses.

The function contains many instances of deeply nested dictionary access using chained .get() calls, which makes the code hard to read. Consider adding a helper function to simplify these accesses.

Add a helper function at the beginning of the file:

def get_nested_dict_value(dictionary: dict, keys: list, default=None):
    """Safely get a value from a nested dictionary.
    
    Args:
        dictionary: The dictionary to search in.
        keys: A list of keys representing the path to the value.
        default: The default value to return if the key path doesn't exist.
        
    Returns:
        The value at the key path, or the default value if not found.
    """
    current = dictionary
    for key in keys:
        if not isinstance(current, dict):
            return default
        current = current.get(key, {})
    return current or default

Then use it in the function:

-            batch_size=legacy_config.get("optimization", {}).get("batch_size", 1),
+            batch_size=get_nested_dict_value(legacy_config, ["optimization", "batch_size"], 1),
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between cdc2c99 and d5c871b.

📒 Files selected for processing (1)
  • sleap_nn/config/trainer_config.py (1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint

Copy link

codecov bot commented Mar 27, 2025

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 91.57%. Comparing base (6e116d6) to head (4ab26ad).
Report is 1 commits behind head on main.

❗ There is a different number of reports uploaded between BASE (6e116d6) and HEAD (4ab26ad). Click for more details.

HEAD has 2 uploads less than BASE
Flag BASE (6e116d6) HEAD (4ab26ad)
3 1
Additional details and impacted files
@@            Coverage Diff             @@
##             main     #162      +/-   ##
==========================================
- Coverage   97.01%   91.57%   -5.45%     
==========================================
  Files          46       46              
  Lines        4961     4983      +22     
==========================================
- Hits         4813     4563     -250     
- Misses        148      420     +272     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🧹 Nitpick comments (2)
tests/config/test_trainer_config.py (1)

239-297: Consider verifying the val_data_loader configuration as well.

The new test comprehensively checks most mapped parameters, but it might be beneficial to also verify that val_data_loader is assigned the expected defaults (e.g., batch_size, shuffle, etc.) since it mirrors the training data loader settings. This can increase coverage and potentially catch future regressions.

sleap_nn/config/trainer_config.py (1)

234-367: Remove or implement the commented-out fields for clarity.

Most fields are commented out (e.g., num_workers, amsgrad, step_lr) and can cause confusion about whether they are fully supported. Consider either removing them if they are no longer needed or fully implementing them. This will help maintain code clarity and consistency with the rest of the configuration.

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between d5c871b and e642b41.

📒 Files selected for processing (2)
  • sleap_nn/config/trainer_config.py (1 hunks)
  • tests/config/test_trainer_config.py (2 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (1)
tests/config/test_trainer_config.py (1)

23-23: Looks good adding trainer_mapper to the import list.

No concerns here.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🧹 Nitpick comments (2)
tests/config/test_trainer_config.py (1)

239-297: Consider expanding test coverage for other checkpoint settings.
This test function looks comprehensive, verifying both mapped values and defaults. As an enhancement, consider adding an additional test scenario where "checkpointing" contains "latest_model": True" to confirm config.save_ckpt is correctly set to True.

+ legacy_config["optimization"]["checkpointing"] = {"latest_model": True}
+ config = trainer_mapper(legacy_config)
+ assert config.save_ckpt is True
tests/config/test_model_config.py (1)

123-171: Add optional scenarios for other heads.
The current test thoroughly verifies the single_instance head when using unet. A more exhaustive approach might also test other heads or backbone types if legacy configurations include them (e.g., centroid, centered_instance, multi_instance).

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between e642b41 and 69a65d4.

📒 Files selected for processing (3)
  • sleap_nn/config/model_config.py (1 hunks)
  • tests/config/test_model_config.py (2 hunks)
  • tests/config/test_trainer_config.py (2 hunks)
🧰 Additional context used
🧬 Code Definitions (2)
tests/config/test_trainer_config.py (2)
sleap_nn/config/trainer_config.py (1)
  • trainer_mapper (236-366)
tests/fixtures/datasets.py (1)
  • config (46-174)
tests/config/test_model_config.py (1)
sleap_nn/config/model_config.py (1)
  • model_mapper (837-1002)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (4)
tests/config/test_trainer_config.py (1)

23-23: Import appears consistent.
Adding trainer_mapper import looks straightforward and does not introduce issues.

tests/config/test_model_config.py (1)

121-122: No functional changes detected.
These lines appear to be empty or whitespace. No action needed.

sleap_nn/config/model_config.py (2)

835-836: No functional changes detected.
These lines appear to be blank lines or whitespace. No action needed.


837-1003: centered_instance incorrectly references CentroidConfMapsConfig.
This code uses CenteredInstanceConfig but supplies CentroidConfMapsConfig for confmaps, which is likely a mismatch. Instead, use CenteredInstanceConfMapsConfig to align with the centered_instance design.

-                confmaps=CentroidConfMapsConfig(
+                confmaps=CenteredInstanceConfMapsConfig(
     anchor_part=legacy_config.get("model", {})
     .get("heads", {})
     .get("centered_instance", {})
     .get("anchor_part"),
     sigma=legacy_config.get("model", {})
     .get("heads", {})
     .get("centered_instance", {})
     .get("sigma", 5.0),
     output_stride=legacy_config.get("model", {})
     .get("heads", {})
     .get("centered_instance", {})
     .get("output_stride", 1),
     part_names=legacy_config.get("model", {})
     .get("heads", {})
     .get("centered_instance", {})
     .get("part_names", None),
 )

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 69a65d4 and 3e86b38.

📒 Files selected for processing (2)
  • sleap_nn/config/data_config.py (1 hunks)
  • tests/config/test_data_config.py (2 hunks)
🧰 Additional context used
🧬 Code Definitions (1)
tests/config/test_data_config.py (1)
sleap_nn/config/data_config.py (1)
  • data_mapper (190-295)
⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (2)
tests/config/test_data_config.py (2)

20-20: Import looks good.

The addition of data_mapper to the import statement correctly makes the function available for testing.


127-196: Well-structured and comprehensive test function.

The test function thoroughly validates the data_mapper function by:

  1. Creating a realistic legacy config
  2. Calling the mapper function
  3. Checking all relevant properties of the returned configuration

The test cases cover preprocessing, augmentation, intensity, geometric, and skeleton configurations.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

♻️ Duplicate comments (2)
sleap_nn/config/data_config.py (2)

277-284: 🛠️ Refactor suggestion

Fix scale parameter to use valid values instead of None.

The scale parameter is set with potentially None values, which could cause validation errors since the GeometricConfig class expects a list of floats with default (0.9, 1.1).

                    scale=(
                        legacy_config.get("optimization", {})
                        .get("augmentation_config", {})
-                        .get("scale_min", None),
+                        .get("scale_min", 0.9),
                        legacy_config.get("optimization", {})
                        .get("augmentation_config", {})
-                        .get("scale_max", None),
+                        .get("scale_max", 1.1),
                    ),

297-300: 🛠️ Refactor suggestion

Fix inconsistent handling of use_augmentations_train.

The function:

  1. Has a commented-out conditional check for augmentation_config (lines 297-298)
  2. Hardcodes use_augmentations_train=True (line 300)

This creates inconsistency with the DataConfig class default (False) and makes the augmentation configuration ignore the actual setting.

            )
-            # if legacy_config.get("use_augmentations_train", False)
-            # else None
+            if legacy_config.get("optimization", {}).get("use_augmentations", True)
+            else None
        ),
-        use_augmentations_train=True,
+        use_augmentations_train=legacy_config.get("optimization", {}).get("use_augmentations", True),
🧹 Nitpick comments (10)
tests/assets/fixtures/datasets.py (1)

4-4: Remove the unused import to adhere to cleanliness.

Line 4 imports OmegaConf but it's never used in this file. Please remove it to keep the file lean and avoid unnecessary dependencies.

- from omegaconf import OmegaConf
🧰 Tools
🪛 Ruff (0.8.2)

4-4: omegaconf.OmegaConf imported but unused

Remove unused import: omegaconf.OmegaConf

(F401)

tests/config/test_training_job_config.py (3)

36-36: Remove the unused import for sleapnn_data_dir if it's not needed.

Static analysis indicates sleapnn_data_dir is unused. Review whether this fixture is needed; if not, remove it to eliminate the lint warning and keep dependencies minimal.

- from tests.assets.fixtures.datasets import sleapnn_data_dir, training_job_config_path
+ from tests.assets.fixtures.datasets import training_job_config_path
🧰 Tools
🪛 Ruff (0.8.2)

36-36: tests.assets.fixtures.datasets.sleapnn_data_dir imported but unused

Remove unused import

(F401)


36-36: tests.assets.fixtures.datasets.training_job_config_path imported but unused

Remove unused import

(F401)


38-38: Remove the unused import dataclasses.asdict.

This import does not appear to be used in the test file. Removing it helps tidy up the code.

- from dataclasses import asdict
🧰 Tools
🪛 Ruff (0.8.2)

38-38: dataclasses.asdict imported but unused

Remove unused import: dataclasses.asdict

(F401)


41-41: Remove the unused import json.

Although load_sleap_config relies on json, this test file itself does not call json directly. Removing the local import is recommended to satisfy static analysis warnings.

- import json
🧰 Tools
🪛 Ruff (0.8.2)

41-41: json imported but unused

Remove unused import: json

(F401)

sleap_nn/config/model_config.py (1)

837-1003: Consider broader support for non-UNet backbones.

Currently, this mapper only populates a UNetConfig and skips other potential backbone structures. If your legacy configs might include convnext or swint entries, consider handling them similarly. This ensures graceful fallback rather than silently ignoring those entries.

sleap_nn/config/trainer_config.py (3)

237-371: Add a docstring to the trainer_mapper function.

Adding a docstring would improve the maintainability and readability of this function by documenting its purpose, parameters, and return value.

+"""
+Maps a legacy configuration dictionary to a TrainerConfig object.
+
+Parameters:
+    legacy_config (dict): A dictionary containing legacy configuration settings.
+
+Returns:
+    TrainerConfig: An instance of TrainerConfig populated with values from legacy_config.
+"""
def trainer_mapper(legacy_config: dict) -> TrainerConfig:

305-309: Simplify the regex for capitalizing the first letter.

The regex to capitalize the first letter of the optimizer name is more complex than needed. Using the built-in capitalize() method would be more readable.

-        optimizer_name=re.sub(
-            r"^[a-z]",
-            lambda x: x.group().upper(),
-            legacy_config.get("optimization", {}).get("optimizer", "adam"),
-        ),
+        optimizer_name=legacy_config.get("optimization", {}).get("optimizer", "adam").capitalize(),

242-247: Explain the purpose of commented-out code sections.

There are multiple sections of commented-out code without explanation. This makes it difficult to understand whether these sections are incomplete implementations, deprecated code, or placeholders for future development.

Add explanatory comments at the beginning of commented-out sections, for example:

+        # NOTE: The following parameters are intentionally not mapped as they are not
+        # present in legacy SLEAP configurations or have different default values
         # num_workers=legacy_config.get("optimization", {})
         # .get("train_data_loader", {})
         # .get("num_workers", 0),

Also applies to: 250-255, 258-260, 262-268, 271-281, 282-304

sleap_nn/config/data_config.py (2)

190-191: Add a docstring to the data_mapper function.

The function lacks documentation explaining its purpose, parameters, and return value, which would improve maintainability.

+"""
+Maps a legacy configuration dictionary to a DataConfig object.
+
+Parameters:
+    legacy_config (dict): A dictionary containing legacy configuration settings.
+
+Returns:
+    DataConfig: An instance of DataConfig populated with values from legacy_config.
+"""
def data_mapper(legacy_config: dict) -> DataConfig:

236-239: Document the normalization of uniform_noise_max_val.

The function divides uniform_noise_max_val by 100.0, but this normalization is not documented and isn't applied to other similar values.

                    uniform_noise_max=legacy_config.get("optimization", {})
                    .get("augmentation_config", {})
-                    .get("uniform_noise_max_val", 100.0)
-                    / 100.0,
+                    .get("uniform_noise_max_val", 100.0) / 100.0,  # Convert percentage to fraction
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 3e86b38 and d4edbaa.

📒 Files selected for processing (7)
  • sleap_nn/config/data_config.py (1 hunks)
  • sleap_nn/config/model_config.py (1 hunks)
  • sleap_nn/config/trainer_config.py (2 hunks)
  • tests/assets/fixtures/datasets.py (1 hunks)
  • tests/assets/training_config.json (1 hunks)
  • tests/config/test_data_config.py (2 hunks)
  • tests/config/test_training_job_config.py (2 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • tests/config/test_data_config.py
🧰 Additional context used
🧬 Code Definitions (1)
tests/config/test_training_job_config.py (4)
sleap_nn/config/training_job_config.py (1)
  • load_sleap_config (155-167)
sleap_nn/config/model_config.py (1)
  • ModelConfig (755-834)
sleap_nn/config/trainer_config.py (1)
  • TrainerConfig (163-234)
tests/assets/fixtures/datasets.py (2)
  • sleapnn_data_dir (10-12)
  • training_job_config_path (16-18)
🪛 Ruff (0.8.2)
tests/assets/fixtures/datasets.py

4-4: omegaconf.OmegaConf imported but unused

Remove unused import: omegaconf.OmegaConf

(F401)

tests/config/test_training_job_config.py

36-36: tests.assets.fixtures.datasets.sleapnn_data_dir imported but unused

Remove unused import

(F401)


36-36: tests.assets.fixtures.datasets.training_job_config_path imported but unused

Remove unused import

(F401)


38-38: dataclasses.asdict imported but unused

Remove unused import: dataclasses.asdict

(F401)


41-41: json imported but unused

Remove unused import: json

(F401)


235-235: Redefinition of unused training_job_config_path from line 36

(F811)

⏰ Context from checks skipped due to timeout of 90000ms (3)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
🔇 Additional comments (4)
tests/config/test_training_job_config.py (2)

235-235: Pytest fixture overshadowing warning.

Static analysis flags a redefinition of training_job_config_path. In pytest, naming the parameter the same as the fixture is intentional so that the fixture is injected automatically. This can safely be ignored unless you prefer a different naming approach to appease the linter.

🧰 Tools
🪛 Ruff (0.8.2)

235-235: Redefinition of unused training_job_config_path from line 36

(F811)


235-261: Test coverage looks comprehensive.

Verifying fields against the JSON config ensures correct loading. These assertions confirm each key aspect of the loaded config, which improves confidence in backward compatibility.

🧰 Tools
🪛 Ruff (0.8.2)

235-235: Redefinition of unused training_job_config_path from line 36

(F811)

tests/assets/training_config.json (1)

1-218: Configuration file creation approved.

This JSON file thoroughly covers model, data, and optimization parameters for your legacy config. Adding it strengthens test coverage for the new load_sleap_config functionality.

sleap_nn/config/model_config.py (1)

933-953: centered_instance head incorrectly uses CentroidConfMapsConfig.

As previously noted, CenteredInstanceConfig expects a CenteredInstanceConfMapsConfig, not a CentroidConfMapsConfig. This mismatch can lead to erroneous behavior.

- CenteredInstanceConfig(
-     confmaps=CentroidConfMapsConfig(
+ CenteredInstanceConfig(
+     confmaps=CenteredInstanceConfMapsConfig(
         anchor_part=...,
         sigma=...,
         output_stride=...,
         part_names=...
     )
 )

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

🔭 Outside diff range comments (1)
tests/config/test_training_job_config.py (1)

236-279: 🛠️ Refactor suggestion

Improve exception handling and file management in test.

The test has a few issues that should be addressed:

  1. Unused variable e in the exception handler
  2. Unsafe temporary file handling that doesn't guarantee cleanup
  3. Complex control flow with try-except block

Consider using a context manager for temporary file handling and simplifying the test:

def test_load_sleap_config_from_file(training_job_config_path):
    """Test the load_sleap_config function with a sample legacy configuration from a JSON file."""
    # Path to the training_config.json file
    json_file_path = training_job_config_path

    # Load the configuration using the load_sleap_config method
    try:
        # Load the configuration using the load_sleap_config method
        config = load_sleap_config(TrainingJobConfig, json_file_path)
-    except MissingMandatoryValue as e:
+    except MissingMandatoryValue:
        with open(json_file_path, "r") as f:
            old_config = json.load(f)

        # Create a temporary file to hold the modified configuration
-        with tempfile.NamedTemporaryFile(delete=False, suffix='.json', mode='w') as temp_file:
+        with tempfile.NamedTemporaryFile(suffix='.json', mode='w', delete=False) as temp_file:
            old_config['data']['labels']['training_labels'] = "notMISSING"
            old_config['data']['labels']['validation_labels'] = "notMISSING"
            
            json.dump(old_config, temp_file)
            temp_file_path = temp_file.name

-        config = load_sleap_config(TrainingJobConfig, temp_file_path)
-        os.remove(temp_file_path)
+        try:
+            config = load_sleap_config(TrainingJobConfig, temp_file_path)
+        finally:
+            os.remove(temp_file_path)

Also consider validating the exception message to ensure the correct failure is caught:

def test_load_sleap_config_missing_fields(training_job_config_path):
    """Test that load_sleap_config raises appropriate exceptions for missing fields."""
    with tempfile.NamedTemporaryFile(suffix='.json', mode='w') as temp_file:
        # Create a config with missing mandatory fields
        json.dump({"data": {"labels": {}}}, temp_file)
        temp_file.flush()
        
        # Verify the exception is raised with the expected message
        with pytest.raises(MissingMandatoryValue, match="train_labels_path is missing"):
            load_sleap_config(TrainingJobConfig, temp_file.name)
🧰 Tools
🪛 Ruff (0.8.2)

236-236: Redefinition of unused training_job_config_path from line 36

(F811)


245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

🧹 Nitpick comments (4)
tests/config/test_data_config.py (1)

127-200: Good test coverage for data_mapper function!

The test provides comprehensive validation for all aspects of the data_mapper function, including preprocessing, augmentation, and skeleton configurations.

Consider adding tests for error conditions:

  1. What happens when mandatory fields like training_labels or validation_labels are missing?
  2. How does the function handle edge cases or invalid values?
def test_data_mapper_missing_mandatory_fields():
    """Test the data_mapper function with missing mandatory fields."""
    # Test missing training_labels
    legacy_config = {
        "data": {
            "labels": {
                "validation_labels": "valid_path",
            }
        }
    }
    with pytest.raises(MissingMandatoryValue, match="train_labels_path is missing"):
        data_mapper(legacy_config)
    
    # Test missing validation_labels
    legacy_config = {
        "data": {
            "labels": {
                "training_labels": "valid_path",
            }
        }
    }
    with pytest.raises(MissingMandatoryValue, match="val_labels_path is missing"):
        data_mapper(legacy_config)
tests/config/test_training_job_config.py (3)

31-36: Clean up unused imports.

Several imports are not being used in this file. Consider removing them to improve code clarity.

from sleap_nn.config.training_job_config import TrainingJobConfig
from sleap_nn.config.training_job_config import load_sleap_config
from sleap_nn.config.model_config import ModelConfig
from sleap_nn.config.data_config import DataConfig
from sleap_nn.config.trainer_config import TrainerConfig, EarlyStoppingConfig
from sleap_nn.config.data_config import IntensityConfig
-from tests.assets.fixtures.datasets import sleapnn_data_dir, training_job_config_path
+from tests.assets.fixtures.datasets import training_job_config_path
from omegaconf import OmegaConf, MissingMandatoryValue
-from dataclasses import asdict
import json
-from omegaconf import MISSING
🧰 Tools
🪛 Ruff (0.8.2)

36-36: tests.assets.fixtures.datasets.sleapnn_data_dir imported but unused

Remove unused import

(F401)


36-36: tests.assets.fixtures.datasets.training_job_config_path imported but unused

Remove unused import

(F401)


245-245: Remove unused exception variable.

The exception variable e is not being used in the exception handler.

    try:
        # Load the configuration using the load_sleap_config method
        config = load_sleap_config(TrainingJobConfig, json_file_path)
-    except MissingMandatoryValue as e:
+    except MissingMandatoryValue:
🧰 Tools
🪛 Ruff (0.8.2)

245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


251-260: Use context manager for safer temporary file handling.

The current approach doesn't guarantee the temporary file will be deleted if an exception occurs during loading.

-        with tempfile.NamedTemporaryFile(delete=False, suffix='.json', mode='w') as temp_file:
-            old_config['data']['labels']['training_labels'] = "notMISSING"
-            old_config['data']['labels']['validation_labels'] = "notMISSING"
-            
-            json.dump(old_config, temp_file)
-            temp_file_path = temp_file.name
-
-        config = load_sleap_config(TrainingJobConfig, temp_file_path)
-        os.remove(temp_file_path)
+        with tempfile.NamedTemporaryFile(suffix='.json', mode='w', delete=False) as temp_file:
+            old_config['data']['labels']['training_labels'] = "notMISSING"
+            old_config['data']['labels']['validation_labels'] = "notMISSING"
+            
+            json.dump(old_config, temp_file)
+            temp_file_path = temp_file.name
+
+        try:
+            config = load_sleap_config(TrainingJobConfig, temp_file_path)
+        finally:
+            if os.path.exists(temp_file_path):
+                os.remove(temp_file_path)
📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between d4edbaa and 70a5052.

📒 Files selected for processing (3)
  • sleap_nn/config/data_config.py (2 hunks)
  • tests/config/test_data_config.py (2 hunks)
  • tests/config/test_training_job_config.py (2 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • sleap_nn/config/data_config.py
🧰 Additional context used
🧬 Code Definitions (2)
tests/config/test_data_config.py (1)
sleap_nn/config/data_config.py (1)
  • data_mapper (190-305)
tests/config/test_training_job_config.py (2)
sleap_nn/config/training_job_config.py (2)
  • load_sleap_config (155-167)
  • TrainingJobConfig (42-138)
tests/assets/fixtures/datasets.py (2)
  • sleapnn_data_dir (10-12)
  • training_job_config_path (16-18)
🪛 Ruff (0.8.2)
tests/config/test_training_job_config.py

36-36: tests.assets.fixtures.datasets.sleapnn_data_dir imported but unused

Remove unused import

(F401)


36-36: tests.assets.fixtures.datasets.training_job_config_path imported but unused

Remove unused import

(F401)


38-38: dataclasses.asdict imported but unused

Remove unused import: dataclasses.asdict

(F401)


42-42: omegaconf.MISSING imported but unused

Remove unused import: omegaconf.MISSING

(F401)


236-236: Redefinition of unused training_job_config_path from line 36

(F811)


245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

⏰ Context from checks skipped due to timeout of 90000ms (3)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

🧹 Nitpick comments (12)
sleap_nn/config/model_config.py (1)

835-836: Remove unnecessary blank lines.

These two blank lines appear to serve no functional purpose. Consider removing them to keep the code more concise and aligned with standard style conventions.

tests/config/test_data_config.py (1)

127-200: Test provides comprehensive coverage of the data_mapper function.

The test effectively validates all aspects of the data_mapper function from sleap_nn/config/data_config.py, including:

  1. Correct handling of labels paths
  2. Preprocessing configuration conversion
  3. Augmentation configuration handling
  4. Intensity configuration parameters
  5. Geometric transformation parameters
  6. Skeletons configuration mapping

Consider adding test cases for error conditions, such as missing mandatory values (e.g., when train_labels_path or val_labels_path are missing). This would help ensure the function correctly raises appropriate exceptions in those scenarios.

def test_data_mapper_missing_mandatory_values():
    """Test that data_mapper raises appropriate exceptions for missing mandatory values."""
    # Test missing train_labels_path
    legacy_config_missing_train = {
        "data": {
            "labels": {
                "validation_labels": "some_path.slp"
            }
        }
    }
    with pytest.raises(MissingMandatoryValue, match="train_labels_path is missing"):
        data_mapper(legacy_config_missing_train)
    
    # Test missing val_labels_path
    legacy_config_missing_val = {
        "data": {
            "labels": {
                "training_labels": "some_path.slp"
            }
        }
    }
    with pytest.raises(MissingMandatoryValue, match="val_labels_path is missing"):
        data_mapper(legacy_config_missing_val)
tests/assets/fixtures/datasets.py (2)

4-4: Remove unused import.
The static analysis tool detects that OmegaConf is imported but unused.

Apply this diff to remove the unused import:

-from omegaconf import OmegaConf
🧰 Tools
🪛 Ruff (0.8.2)

4-4: omegaconf.OmegaConf imported but unused

Remove unused import: omegaconf.OmegaConf

(F401)


34-35: Update docstring to match file name.
The docstring says "Path to centered_instance_training_config file." but the actual file is "centered_instance_with_scaling_training_config.json".

-    """Path to centered_instance_training_config file."""
+    """Path to centered_instance_with_scaling_training_config file."""
tests/config/test_training_job_config.py (8)

36-36: Avoid wildcard import.
Using import * can mask undefined names.

Here is a diff showing an explicit import:

-from tests.assets.fixtures.datasets import *
+from tests.assets.fixtures.datasets import (
+    sleapnn_data_dir,
+    training_job_config_path,
+    bottomup_training_config_path,
+    centered_instance_training_config_path,
+    centered_instance_with_scaling_training_config_path,
+    centroid_training_config_path,
+    single_instance_training_config_path,
+    topdown_training_config_path,
+)
🧰 Tools
🪛 Ruff (0.8.2)

36-36: from tests.assets.fixtures.datasets import * used; unable to detect undefined names

(F403)


38-38: Remove unused import.
dataclasses.asdict is not referenced in this file.

-from dataclasses import asdict
🧰 Tools
🪛 Ruff (0.8.2)

38-38: dataclasses.asdict imported but unused

Remove unused import: dataclasses.asdict

(F401)


42-42: Remove unused import.
omegaconf.MISSING is never used.

-from omegaconf import MISSING
🧰 Tools
🪛 Ruff (0.8.2)

42-42: omegaconf.MISSING imported but unused

Remove unused import: omegaconf.MISSING

(F401)


43-43: Remove unused import.
pprint.pprint is never used.

-from pprint import pprint
🧰 Tools
🪛 Ruff (0.8.2)

43-43: pprint.pprint imported but unused

Remove unused import: pprint.pprint

(F401)


245-245: Remove assignment to unused variable.
The local variable e is assigned but never used.

-    except MissingMandatoryValue as e:
+    except MissingMandatoryValue:
🧰 Tools
🪛 Ruff (0.8.2)

245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


296-296: Remove assignment to unused variable.
The local variable e is assigned but never used.

-    except MissingMandatoryValue as e:
+    except MissingMandatoryValue:
🧰 Tools
🪛 Ruff (0.8.2)

296-296: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


340-340: Remove assignment to unused variable.
Again, e is not utilized.

-    except MissingMandatoryValue as e:
+    except MissingMandatoryValue:
🧰 Tools
🪛 Ruff (0.8.2)

340-340: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


237-285: Refactor repeated code blocks in tests.
Each test repeats the same logic for handling MissingMandatoryValue, rewriting JSON, and loading the updated file.

Consider extracting this into a helper function or fixture to reduce duplication:

def load_or_fix_legacy_config(json_file_path, required_keys=None):
    """
    Attempt to load the config. If MissingMandatoryValue is raised,
    rewrite the config JSON with non-missing placeholders.
    """
    from omegaconf import MissingMandatoryValue
    import tempfile, os, json

    if required_keys is None:
        required_keys = [("data", "labels", "training_labels"), ("data", "labels", "validation_labels")]
    try:
        return load_sleap_config(TrainingJobConfig, json_file_path)
    except MissingMandatoryValue:
        with open(json_file_path, "r") as f:
            old_config = json.load(f)

        for key_path in required_keys:
            cfg = old_config
            for kp in key_path[:-1]:
                cfg = cfg[kp]
            cfg[key_path[-1]] = "notMISSING"

        with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode="w") as temp_file:
            json.dump(old_config, temp_file)
            temp_file_path = temp_file.name

        config = load_sleap_config(TrainingJobConfig, temp_file_path)
        os.remove(temp_file_path)
        return config

Also applies to: 287-327, 329-371, 373-407, 409-439, 441-473, 475-510

🧰 Tools
🪛 Ruff (0.8.2)

245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 70a5052 and 4b82c4c.

📒 Files selected for processing (11)
  • sleap_nn/config/data_config.py (2 hunks)
  • sleap_nn/config/model_config.py (1 hunks)
  • tests/assets/bottomup_training_config.json (1 hunks)
  • tests/assets/centered_instance_training_config.json (1 hunks)
  • tests/assets/centered_instance_with_scaling_training_config.json (1 hunks)
  • tests/assets/centroid_training_config.json (1 hunks)
  • tests/assets/fixtures/datasets.py (1 hunks)
  • tests/assets/single_instance_training_config.json (1 hunks)
  • tests/assets/topdown_training_config.json (1 hunks)
  • tests/config/test_data_config.py (2 hunks)
  • tests/config/test_training_job_config.py (2 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • sleap_nn/config/data_config.py
🧰 Additional context used
🧬 Code Definitions (2)
tests/config/test_data_config.py (1)
sleap_nn/config/data_config.py (1)
  • data_mapper (190-317)
tests/config/test_training_job_config.py (2)
sleap_nn/config/training_job_config.py (2)
  • load_sleap_config (155-167)
  • TrainingJobConfig (42-138)
tests/assets/fixtures/datasets.py (7)
  • training_job_config_path (16-18)
  • bottomup_training_config_path (22-24)
  • centered_instance_training_config_path (28-30)
  • centered_instance_with_scaling_training_config_path (34-38)
  • centroid_training_config_path (42-44)
  • single_instance_training_config_path (48-50)
  • topdown_training_config_path (54-56)
🪛 Ruff (0.8.2)
tests/assets/fixtures/datasets.py

4-4: omegaconf.OmegaConf imported but unused

Remove unused import: omegaconf.OmegaConf

(F401)

tests/config/test_training_job_config.py

36-36: from tests.assets.fixtures.datasets import * used; unable to detect undefined names

(F403)


38-38: dataclasses.asdict imported but unused

Remove unused import: dataclasses.asdict

(F401)


42-42: omegaconf.MISSING imported but unused

Remove unused import: omegaconf.MISSING

(F401)


43-43: pprint.pprint imported but unused

Remove unused import: pprint.pprint

(F401)


245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


296-296: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


340-340: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

⏰ Context from checks skipped due to timeout of 90000ms (3)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
🔇 Additional comments (9)
sleap_nn/config/model_config.py (1)

837-1010: Ensure consistency in mapped fields and defaults, and confirm handling of unimplemented parameters.

  1. The function comments indicate support for init_weights, pre_trained_weights, and pretrained_backbone_weights, but these parameters are commented out. Confirm that omitting them from the mapped values is intended or, if relevant, implement their extraction from legacy_config.
  2. stem_stride for UNetConfig is given a default of 16 here, whereas the class definition uses None. This may cause discrepancies if the legacy config expects the fallback to match the class default.
  3. convs_per_block in the UNet config is also commented out. Verify whether you want to keep the class default (2) or map a value from legacy_config.
  4. Confirm that "multi_instance" in the old config is indeed the correct indicator for the bottomup head logic. If old configs had an explicit "bottomup" key, consider adjusting accordingly.
  5. The code does not handle fields like offset_refinement or loss_weight for centered_instance or other heads (unless explicitly mapped). Ensure this omission is intentional.
tests/assets/centered_instance_with_scaling_training_config.json (1)

1-226: Verify newly added parameters align with code usage.

  1. The "centered_instance" block includes "offset_refinement" and "loss_weight" fields, but the current CenteredInstanceConfig class does not parse them. Verify whether these fields should be read and mapped to the code.
  2. Setting "center_on_part": null might be intentional, but confirm the downstream logic handles None gracefully, especially if you later rely on an anchor part.
  3. Windows-style double backslashes in "filename" (line 225) are acceptable if needed for a Windows environment, but ensure any code consuming this path can handle it properly.
tests/assets/centroid_training_config.json (1)

1-202: Confirm “offset_refinement” usage for centroid head.

In the "centroid" head configuration, "offset_refinement" is set to true, but neither CentroidConfig nor CentroidConfMapsConfig includes a corresponding field. Ensure that any additional fields beyond "anchor_part", "sigma", and "output_stride" are either needed or supported at runtime.

tests/config/test_data_config.py (1)

20-20: LGTM: Added data_mapper import to test module.

The import of the new data_mapper function is correctly added to the existing import statement from the data_config module.

tests/assets/bottomup_training_config.json (1)

1-219:

✅ Verification successful

Comprehensive bottomup training configuration template.

The configuration file is well-structured and covers all necessary parameters for bottomup training, including data preprocessing, model architecture, optimization settings, and output handling.

The training and validation labels are set to null, which may be intentional for a template file. Verify that tests or example code that uses this configuration handle these null values appropriately by either:


🏁 Script executed:

#!/bin/bash
# Check if there are tests that verify null label paths are handled properly
rg -A 10 "test.*bottomup.*config" --type py tests/

Length of output: 4156


Review Update: Bottomup Training Config Verified

The bottomup training configuration in tests/assets/bottomup_training_config.json is structured well. The tests (in files such as tests/training/test_model_trainer.py, tests/test_train.py, tests/data/test_streaming_datasets.py, tests/data/test_get_data_chunks.py, and tests/config/test_training_job_config.py) confirm that the intentional null values for training_labels, validation_labels, and test_labels are handled appropriately within the application flow.

No further changes are required.

tests/assets/centered_instance_training_config.json (1)

1-206:

✅ Verification successful

Complete centered instance training configuration template.

The configuration provides all necessary parameters for centered-instance model training with appropriate structure and organization.

Similar to the bottomup configuration, the training and validation labels are set to null. Verify that code using this configuration handles these null values correctly:


🏁 Script executed:

#!/bin/bash
# Check if there are tests for centered instance config with null labels
rg -A 10 "test.*centered.*instance.*config" --type py tests/

# Check for potential validation of required fields
rg -A 5 -B 5 "validation.*labels.*null" --type py sleap_nn/

Length of output: 4424


Centered Instance Training Config Verified and Approved

The configuration template is complete and organized, mirroring the bottom‐up configuration by setting the training, validation, and test labels to null. The tests—such as those in tests/config/test_training_job_config.py, tests/data/test_centered_instance_data_chunks.py, and tests/data/test_streaming_datasets.py—successfully load and utilize this configuration, indicating that the code properly handles these null values. No additional changes are required.

tests/assets/fixtures/datasets.py (1)

1-2: Docstring looks good.
Coverage of high-level purpose of dataset fixtures is clear and concise.

tests/assets/topdown_training_config.json (1)

1-240: Configuration file appears logically structured.
No syntactic or semantic issues are apparent. The sections (data, model, optimization, outputs) illustrate a comprehensive top-down approach. The skeleton nodes and edges are correctly nested.

tests/config/test_training_job_config.py (1)

31-31: New import of load_sleap_config is appropriate.
This import corresponds directly to the new tests, enabling JSON-based loading functionality.

Comment on lines +1 to +207
"centroid": null,
"centered_instance": null,
"multi_instance": null
}
},
"optimization": {
"preload_data": true,
"augmentation_config": {
"rotate": false,
"rotation_min_angle": -180.0,
"rotation_max_angle": 180.0,
"translate": false,
"translate_min": -5,
"translate_max": 5,
"scale": false,
"scale_min": 0.9,
"scale_max": 1.1,
"uniform_noise": false,
"uniform_noise_min_val": 0.0,
"uniform_noise_max_val": 10.0,
"gaussian_noise": false,
"gaussian_noise_mean": 5.0,
"gaussian_noise_stddev": 1.0,
"contrast": false,
"contrast_min_gamma": 0.5,
"contrast_max_gamma": 2.0,
"brightness": false,
"brightness_min_val": 0.0,
"brightness_max_val": 10.0,
"random_crop": false,
"random_crop_height": 256,
"random_crop_width": 256
},
"online_shuffling": true,
"shuffle_buffer_size": 128,
"prefetch": true,
"batch_size": 4,
"batches_per_epoch": 200,
"min_batches_per_epoch": 200,
"val_batches_per_epoch": 10,
"min_val_batches_per_epoch": 10,
"epochs": 100,
"optimizer": "adam",
"initial_learning_rate": 0.001,
"learning_rate_schedule": {
"reduce_on_plateau": true,
"reduction_factor": 0.5,
"plateau_min_delta": 1e-06,
"plateau_patience": 5,
"plateau_cooldown": 3,
"min_learning_rate": 1e-08
},
"hard_keypoint_mining": {
"online_mining": false,
"hard_to_easy_ratio": 2.0,
"min_hard_keypoints": 2,
"max_hard_keypoints": null,
"loss_scale": 5.0
},
"early_stopping": {
"stop_training_on_plateau": true,
"plateau_min_delta": 1e-06,
"plateau_patience": 10
}
},
"outputs": {
"save_outputs": true,
"run_name": "minimal_robot.UNet.single_instance",
"run_name_prefix": "",
"run_name_suffix": "",
"runs_folder": "",
"tags": [
""
],
"save_visualizations": false,
"keep_viz_images": true,
"log_to_csv": true,
"checkpointing": {
"initial_model": false,
"best_model": true,
"every_epoch": false,
"latest_model": false,
"final_model": false
},
"tensorboard": {
"write_logs": false,
"loss_frequency": "epoch",
"architecture_graph": false,
"profile_graph": false,
"visualizations": true
},
"zmq": {
"subscribe_to_controller": true,
"controller_address": "tcp://127.0.0.1:9000",
"controller_polling_timeout": 10,
"publish_updates": true,
"publish_address": "tcp://127.0.0.1:9001"
}
}
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Verification agent

🧩 Analysis chain

Well-defined single instance training configuration.

This configuration file provides a complete setup for single-instance training with appropriate paths, model structure, and optimization parameters.

The training labels path ("tests/data/slp_hdf5/small_robot_minimal.slp") needs to exist for tests to pass. Let's verify this:


🏁 Script executed:

#!/bin/bash
# Check if the referenced training data file exists
if [ -f "tests/data/slp_hdf5/small_robot_minimal.slp" ]; then
    echo "Training data file exists"
else
    echo "ERROR: Training data file not found"
    # List available files in that directory to help debugging
    echo "Available files:"
    ls -la tests/data/slp_hdf5/ 2>/dev/null || echo "Directory does not exist"
fi

Length of output: 269


Action Required: Missing Training Data File

The single instance training configuration is well-structured; however, the referenced training labels path ("tests/data/slp_hdf5/small_robot_minimal.slp") does not exist. This missing file (or directory) is causing tests to fail.

  • Action: Please ensure that the file is added to the repository at the correct location, or update the configuration file to provide a valid path for the training labels.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

🔭 Outside diff range comments (1)
sleap_nn/config/data_config.py (1)

190-313: 🛠️ Refactor suggestion

Several concerns in the new data_mapper function.

  1. Commented-out code: Key parameters like provider, user_instances_only, etc., remain commented out. If they are required, consider uncommenting or removing them altogether to reduce confusion.
  2. Forcing use_augmentations_train to True: You currently override this with a hard-coded True (line 310). Most designs expect reading it from the legacy config (e.g., legacy_config.get("use_augmentations_train", False)).
  3. Potential (None, None) usage: Passing (None, None) as scale (lines 288–293) can break validations in GeometricConfig. Confirm whether this is intended or provide a default numeric range if the config is missing a scale setting.

Below is a snippet to let legacy_config decide if augmentations are used, and to supply a safer default for scale:

-        use_augmentations_train=True,
+        use_augmentations_train=bool(
+            legacy_config.get("optimization", {})
+                       .get("use_augmentations", False)
+        ),

-                    scale=(
-                        legacy_config.get("optimization", {})
-                        .get("augmentation_config", {})
-                        .get("scale_min", None),
-                        legacy_config.get("optimization", {})
-                        .get("augmentation_config", {})
-                        .get("scale_max", None),
-                    ),
+                    scale=(
+                        legacy_config.get("optimization", {})
+                        .get("augmentation_config", {})
+                        .get("scale_min", 0.9),
+                        legacy_config.get("optimization", {})
+                        .get("augmentation_config", {})
+                        .get("scale_max", 1.1),
+                    ),
♻️ Duplicate comments (1)
sleap_nn/config/training_job_config.py (1)

155-173: 🛠️ Refactor suggestion

Multiple issues with the load_sleap_config function.

  1. Lack of error handling: No try/except to handle file I/O errors and JSON parse errors (e.g., FileNotFoundError, json.JSONDecodeError). This can lead to uncaught exceptions at runtime.
  2. @classmethod usage: The function uses cls as its first parameter, but it isn’t decorated with @classmethod, causing potential confusion about its intended usage.
  3. Missing check_output_strides: Unlike from_yaml and load_yaml, this loader doesn’t invoke TrainingJobConfig.check_output_strides(config), potentially leading to inconsistent stride settings relative to the YAML loading path.
  4. Return type mismatch: The function signature says it returns a TrainerConfig, but the actual return object is an OmegaConf instance.

Below is a suggested refactor that includes error handling, calls check_output_strides, and aligns the return type:

+@classmethod
-def load_sleap_config(cls, json_file_path: str) -> TrainerConfig:
+def load_sleap_config(cls, json_file_path: str) -> OmegaConf:
    +import json
    try:
        with open(json_file_path, "r") as f:
            old_config = json.load(f)
    except FileNotFoundError:
        raise FileNotFoundError(f"Configuration file not found: {json_file_path}")
    except json.JSONDecodeError:
        raise ValueError(f"Invalid JSON in configuration file: {json_file_path}")

    data_config = data_mapper(old_config)
    model_config = model_mapper(old_config)
    trainer_config = trainer_mapper(old_config)

    config = cls(
        data_config=data_config,
        model_config=model_config,
        trainer_config=trainer_config,
    )

    schema = OmegaConf.structured(config)
    config_omegaconf = OmegaConf.merge(schema, OmegaConf.create(asdict(config)))
    +config_omegaconf = cls.check_output_strides(config_omegaconf)
    OmegaConf.to_container(config_omegaconf, resolve=True, throw_on_missing=True)

    return config_omegaconf
🧹 Nitpick comments (3)
sleap_nn/config/data_config.py (1)

8-8: Remove the unused import.
MissingMandatoryValue is never invoked, so please remove it to address the linter’s warning and keep your imports clean.

-from omegaconf import MISSING, MissingMandatoryValue
+from omegaconf import MISSING
🧰 Tools
🪛 Ruff (0.8.2)

8-8: omegaconf.MissingMandatoryValue imported but unused

Remove unused import: omegaconf.MissingMandatoryValue

(F401)

tests/config/test_training_job_config.py (2)

36-37: Avoid star-import if possible.
Using import * from fixtures can clutter the namespace and make it harder to track dependencies. Prefer explicitly importing only what you need.

🧰 Tools
🪛 Ruff (0.8.2)

36-36: from tests.assets.fixtures.datasets import * used; unable to detect undefined names

(F403)


41-43: Several unused imports.

  • json is used in the tests below, so it’s fine.
  • MISSING (line 42) and pprint (line 43) appear unused. Consider removing them along with any other imports flagged by static analysis for clarity.
 import json
-from omegaconf import MISSING
-from pprint import pprint
🧰 Tools
🪛 Ruff (0.8.2)

42-42: omegaconf.MISSING imported but unused

Remove unused import: omegaconf.MISSING

(F401)


43-43: pprint.pprint imported but unused

Remove unused import: pprint.pprint

(F401)

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 4b82c4c and e391eb2.

📒 Files selected for processing (3)
  • sleap_nn/config/data_config.py (2 hunks)
  • sleap_nn/config/training_job_config.py (2 hunks)
  • tests/config/test_training_job_config.py (2 hunks)
🧰 Additional context used
🧬 Code Definitions (1)
tests/config/test_training_job_config.py (1)
sleap_nn/config/training_job_config.py (2)
  • load_sleap_config (155-173)
  • TrainingJobConfig (42-138)
🪛 Ruff (0.8.2)
sleap_nn/config/data_config.py

8-8: omegaconf.MissingMandatoryValue imported but unused

Remove unused import: omegaconf.MissingMandatoryValue

(F401)

tests/config/test_training_job_config.py

36-36: from tests.assets.fixtures.datasets import * used; unable to detect undefined names

(F403)


38-38: dataclasses.asdict imported but unused

Remove unused import: dataclasses.asdict

(F401)


42-42: omegaconf.MISSING imported but unused

Remove unused import: omegaconf.MISSING

(F401)


43-43: pprint.pprint imported but unused

Remove unused import: pprint.pprint

(F401)


245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


296-296: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


339-339: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (10)
sleap_nn/config/training_job_config.py (2)

31-37: No issues with new imports.
The newly introduced imports for json and the mapper functions (data_mapper, model_mapper, trainer_mapper) look correct and necessary for the new JSON loading logic.


153-154: No content changes in these lines.
These are simply blank lines, so there is nothing to comment on here.

sleap_nn/config/data_config.py (1)

187-188: Change to Optional[list] for skeletons looks reasonable.
If the legacy configuration indeed returns a list of skeleton definitions, this type adjustment is appropriate.

tests/config/test_training_job_config.py (7)

31-31: No immediate issue.
Introducing load_sleap_config into the test suite is valid given you’re adding JSON-related tests.


287-326: Same repeated pattern of unused ValidationError as e.
Consider applying the same fix or refactoring approach as in the previous test.

🧰 Tools
🪛 Ruff (0.8.2)

296-296: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


328-369: Same repeated pattern of unused ValidationError as e.

🧰 Tools
🪛 Ruff (0.8.2)

339-339: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)


371-404: Same repeated pattern of unused ValidationError as e.


406-437: Same repeated pattern of unused ValidationError as e.


439-471: Same repeated pattern of unused ValidationError as e.


473-508: Same repeated pattern of unused ValidationError as e.

Comment on lines +237 to +285
def test_load_sleap_config_from_file(training_job_config_path):
"""Test the load_sleap_config function with a sample legacy configuration from a JSON file."""

json_file_path = training_job_config_path

# Load the configuration using the load_sleap_config method
try:
config = load_sleap_config(TrainingJobConfig, json_file_path)
except ValidationError as e:

with open(json_file_path, "r") as f:
old_config = json.load(f)

# Create a temporary file to hold the modified configuration
with tempfile.NamedTemporaryFile(
delete=False, suffix=".json", mode="w"
) as temp_file:
old_config["data"]["labels"]["training_labels"] = "notMISSING"
old_config["data"]["labels"]["validation_labels"] = "notMISSING"

json.dump(old_config, temp_file)
temp_file_path = temp_file.name

config = load_sleap_config(TrainingJobConfig, temp_file_path)
os.remove(temp_file_path)

# Assertions to check if the output matches expected values
assert (
config.data_config.train_labels_path == "notMISSING"
) # As per the temp JSON file
assert (
config.data_config.val_labels_path == "notMISSING"
) # As per the temp JSON file
assert config.model_config.backbone_config.unet.filters == 8
assert config.model_config.backbone_config.unet.max_stride == 16
assert config.trainer_config.max_epochs == 200
assert config.trainer_config.optimizer_name == "Adam"
assert config.trainer_config.optimizer.lr == 0.0001
assert config.trainer_config.trainer_devices == "auto" # Default value
assert config.trainer_config.trainer_accelerator == "auto" # Default value
assert config.trainer_config.enable_progress_bar is True # Default value
assert config.trainer_config.train_data_loader.batch_size == 4 # From the JSON file
assert (
config.trainer_config.lr_scheduler.reduce_lr_on_plateau is not None
) # From the JSON file
assert (
config.trainer_config.early_stopping.stop_training_on_plateau is True
) # From the JSON file

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Refactor repeated error handling pattern.
The test tries loading the JSON config, catches ValidationError as e, but never uses e. Also, lines for setting "training_labels" and "validation_labels" to "notMISSING" are duplicated across multiple tests. Consider factoring this into a shared helper or fixture for maintainability.

 try:
     config = load_sleap_config(TrainingJobConfig, json_file_path)
 except ValidationError as e:
-    pass  # e is never used
+    logger.debug(f"Caught ValidationError: {e}")
+    # or remove `as e` if you don't need to reference it

Committable suggestion skipped: line range outside the PR's diff.

🧰 Tools
🪛 Ruff (0.8.2)

245-245: Local variable e is assigned to but never used

Remove assignment to unused variable e

(F841)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

♻️ Duplicate comments (2)
sleap_nn/config/data_config.py (2)

295-302: 🛠️ Refactor suggestion

Fix scale parameter default values

The scale parameter in GeometricConfig is set to None values, which could conflict with validators that expect numeric values. In the GeometricConfig class definition (line 113), the default is (0.9, 1.1).

                    scale=(
                        legacy_config.get("optimization", {})
                        .get("augmentation_config", {})
-                        .get("scale_min", None),
+                        .get("scale_min", 0.9),
                        legacy_config.get("optimization", {})
                        .get("augmentation_config", {})
-                        .get("scale_max", None),
+                        .get("scale_max", 1.1),
                    ),

315-318: ⚠️ Potential issue

Fix inconsistent use_augmentations_train handling

There are two issues:

  1. use_augmentations_train is hardcoded to True regardless of what's in the legacy configuration
  2. The conditional check for setting augmentation_config to None is commented out

This could lead to inconsistencies between the augmentation configuration and whether augmentations are actually used.

            )
-            # if legacy_config.get("use_augmentations_train", False)
-            # else None
+            if legacy_config.get("optimization", {}).get("use_augmentations", True)
+            else None
        ),
-        use_augmentations_train=True,
+        use_augmentations_train=legacy_config.get("optimization", {}).get("use_augmentations", True),
🧹 Nitpick comments (12)
sleap_nn/config/trainer_config.py (4)

313-317: Consider simplifying the regex for capitalizing the optimizer name.

The regex approach works but could be simplified using standard string methods.

-    optimizer_name=re.sub(
-        r"^[a-z]",
-        lambda x: x.group().upper(),
-        legacy_config.get("optimization", {}).get("optimizer", "adam"),
-    ),
+    optimizer_name=legacy_config.get("optimization", {}).get("optimizer", "adam").capitalize(),

270-311: Consider adding a TODO comment for commented-out configurations.

There are numerous commented-out configurations in this function. If these are planned for future implementation, consider adding a TODO comment explaining the plan. If they're not needed, consider removing them for better code clarity.


324-363: Consider adding a helper function for nested dictionary access.

The deeply nested get() calls reduce readability. Consider extracting a helper function to make the code more maintainable.

def get_nested(d, *keys, default=None):
    """Get a value from a nested dictionary by a sequence of keys."""
    result = d
    for key in keys:
        if not isinstance(result, dict):
            return default
        result = result.get(key, {})
    return result if result != {} else default

# Usage example:
patience = get_nested(legacy_config, "optimization", "learning_rate_schedule", "plateau_patience", default=10)

349-358: Inconsistent path access could lead to confusion.

Some parameters are accessed from "learning_rate_schedule" while others might come from "lr_scheduler" (in commented code). This inconsistency could lead to confusion.

Consider documenting why different paths are used or standardize on a consistent approach if possible.

sleap_nn/config/model_config.py (4)

846-895: Consider simplifying repetitive dictionary access patterns

The code contains many repetitive nested .get() calls which make the code verbose and harder to maintain. Consider creating a helper function to simplify this pattern.

+def _get_nested(config, path, default=None):
+    """Get a value from a nested dictionary using a list of keys.
+    
+    Args:
+        config: Dictionary to access
+        path: List of keys to traverse
+        default: Default value if path doesn't exist
+        
+    Returns:
+        Value at the path or default if not found
+    """
+    result = config
+    for key in path:
+        if not isinstance(result, dict):
+            return default
+        result = result.get(key, {})
+    return result if result != {} else default

 def model_mapper(legacy_config: dict) -> ModelConfig:
     """Map the legacy model configuration to the new model configuration.
 
     Args:
         legacy_config: A dictionary containing the legacy model configuration.
 
     Returns:
         An instance of `ModelConfig` with the mapped configuration.
     """
+    model_config = legacy_config.get("model", {})
     return ModelConfig(
         # init_weights=legacy_config.get("init_weights", "default"),
         # pre_trained_weights not in old config
         # pretrained_backbone_weights=legacy_config.get("PretrainedEncoderConfig")?? # i think its different
         # pretrained_head_weights not in old config
         backbone_config=BackboneConfig(
             unet=(
                 UNetConfig(
                     # in_channels=legacy_config.get("backbone", {}).get("in_channels", 1),
                     # kernel_size=legacy_config.get("backbone", {}).get("kernel_size", 3),
-                    filters=legacy_config.get("model", {})
-                    .get("backbone", {})
-                    .get("unet", {})
-                    .get("filters", 32),
+                    filters=_get_nested(model_config, ["backbone", "unet", "filters"], 32),

This pattern could be applied throughout the function to make it more maintainable.


896-920: Remove unnecessary nested parentheses

The SingleInstanceConfig has an unnecessary level of parentheses in the conditional, which can be simplified.

         head_configs=HeadConfig(
             single_instance=(
-                (
-                    SingleInstanceConfig(
-                        confmaps=SingleInstanceConfMapsConfig(
-                            part_names=legacy_config.get("model", {})
-                            .get("heads", {})
-                            .get("single_instance", {})
-                            .get("part_names"),
-                            sigma=legacy_config.get("model", {})
-                            .get("heads", {})
-                            .get("single_instance", {})
-                            .get("sigma", 5.0),
-                            output_stride=legacy_config.get("model", {})
-                            .get("heads", {})
-                            .get("single_instance", {})
-                            .get("output_stride", 1),
-                        )
-                    )
-                )
+                SingleInstanceConfig(
+                    confmaps=SingleInstanceConfMapsConfig(
+                        part_names=legacy_config.get("model", {})
+                        .get("heads", {})
+                        .get("single_instance", {})
+                        .get("part_names"),
+                        sigma=legacy_config.get("model", {})
+                        .get("heads", {})
+                        .get("single_instance", {})
+                        .get("sigma", 5.0),
+                        output_stride=legacy_config.get("model", {})
+                        .get("heads", {})
+                        .get("single_instance", {})
+                        .get("output_stride", 1),
+                    )
+                )
                 if legacy_config.get("model", {})
                 .get("heads", {})
                 .get("single_instance")
                 else None
             ),

969-1016: The bottomup head mapping uses multi_instance paths

Good job on adding the conditional check to maintain the @oneof constraint for the bottomup head. I noticed that the legacy configuration key is multi_instance while the new configuration key is bottomup. This seems intentional, but it would be helpful to add a comment explaining this mapping for future maintenance.

             bottomup=(
                 BottomUpConfig(
+                    # Note: bottomup head was previously called multi_instance in legacy configs
                     confmaps=BottomUpConfMapsConfig(
                         loss_weight=legacy_config.get("model", {})
                         .get("heads", {})
                         .get("multi_instance", {})

837-1018: Add input validation for legacy_config

The function assumes that legacy_config is a valid dictionary, but doesn't validate this. Consider adding input validation to handle edge cases gracefully.

 def model_mapper(legacy_config: dict) -> ModelConfig:
     """Map the legacy model configuration to the new model configuration.
 
     Args:
         legacy_config: A dictionary containing the legacy model configuration.
 
     Returns:
         An instance of `ModelConfig` with the mapped configuration.
     """
+    if not isinstance(legacy_config, dict):
+        logger.warning("Invalid legacy_config provided, using defaults")
+        legacy_config = {}
+    
     return ModelConfig(
sleap_nn/config/data_config.py (4)

8-8: Remove unused import

The MissingMandatoryValue exception is imported but never used in the code.

-from omegaconf import MISSING, MissingMandatoryValue
+from omegaconf import MISSING
🧰 Tools
🪛 Ruff (0.8.2)

8-8: omegaconf.MissingMandatoryValue imported but unused

Remove unused import: omegaconf.MissingMandatoryValue

(F401)


209-216: Add explanation for commented-out parameters

Several parameters are commented out without explanation. If these parameters aren't used in legacy configurations, add a comment explaining why they're commented out. If they should be included, uncomment them.

-        # provider=legacy_config.get("provider", "LabelsReader"),
-        # user_instances_only=legacy_config.get("user_instances_only", True),
-        # data_pipeline_fw=legacy_config.get("data_pipeline_fw", "torch_dataset"),
-        # np_chunks_path=legacy_config.get("np_chunks_path"),
-        # litdata_chunks_path=legacy_config.get("litdata_chunks_path"),
-        # use_existing_chunks=legacy_config.get("use_existing_chunks", False),
-        # chunk_size=int(legacy_config.get("chunk_size", 100)),
-        # delete_chunks_after_training=legacy_config.get("delete_chunks_after_training", True),
+        # These parameters are not part of the legacy SLEAP configuration format
+        # provider=legacy_config.get("provider", "LabelsReader"),
+        # user_instances_only=legacy_config.get("user_instances_only", True),
+        # data_pipeline_fw=legacy_config.get("data_pipeline_fw", "torch_dataset"),
+        # np_chunks_path=legacy_config.get("np_chunks_path"),
+        # litdata_chunks_path=legacy_config.get("litdata_chunks_path"),
+        # use_existing_chunks=legacy_config.get("use_existing_chunks", False),
+        # chunk_size=int(legacy_config.get("chunk_size", 100)),
+        # delete_chunks_after_training=legacy_config.get("delete_chunks_after_training", True),

303-312: Explain commented-out geometric augmentation parameters

Several geometric augmentation parameters are commented out without explanation. If these parameters aren't available in legacy configurations, add a comment explaining why they're commented out. If they should be included, uncomment them.

-                    # translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
-                    # translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
-                    # affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
-                    # erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
-                    # erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
-                    # erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
-                    # erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
-                    # erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
-                    # mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
-                    # mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),
+                    # These geometric augmentation parameters are not available in legacy SLEAP configuration format
+                    # translate_width=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_width", 0.2),
+                    # translate_height=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("translate_height", 0.2),
+                    # affine_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("affine_p", 0.0),
+                    # erase_scale_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_min", 0.0001),
+                    # erase_scale_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_scale_max", 0.01),
+                    # erase_ratio_min=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_min", 1.0),
+                    # erase_ratio_max=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_ratio_max", 1.0),
+                    # erase_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("erase_p", 0.0),
+                    # mixup_lambda=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_lambda", [0.01, 0.05]),
+                    # mixup_p=legacy_config.get("optimization", {}).get("augmentation_config", {}).get("mixup_p", 0.0),

318-318: Add unit tests for data_mapper function

The data_mapper function is complex and handles critical configuration mapping, but there don't appear to be tests for it. Consider adding unit tests to verify it handles various legacy configuration formats correctly.

Would you like me to generate example unit tests for the data_mapper function?

📜 Review details

Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between e391eb2 and 4ab26ad.

📒 Files selected for processing (4)
  • sleap_nn/config/data_config.py (2 hunks)
  • sleap_nn/config/model_config.py (1 hunks)
  • sleap_nn/config/trainer_config.py (2 hunks)
  • sleap_nn/config/training_job_config.py (2 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
  • sleap_nn/config/training_job_config.py
🧰 Additional context used
🪛 Ruff (0.8.2)
sleap_nn/config/data_config.py

8-8: omegaconf.MissingMandatoryValue imported but unused

Remove unused import: omegaconf.MissingMandatoryValue

(F401)

⏰ Context from checks skipped due to timeout of 90000ms (4)
  • GitHub Check: Tests (macos-14, Python 3.9)
  • GitHub Check: Tests (windows-latest, Python 3.9)
  • GitHub Check: Tests (ubuntu-latest, Python 3.9)
  • GitHub Check: Lint
🔇 Additional comments (5)
sleap_nn/config/trainer_config.py (4)

10-10: LGTM on the new import.

The re module import is required for the capitalize operation used in the trainer_mapper function.


237-245: Function signature and docstring look good.

The docstring clearly explains the purpose, parameters, and return value of the function.


247-264: LGTM on the DataLoader configurations.

The train and validation DataLoader configurations correctly set the batch_size and shuffle parameters from the legacy configuration.


364-378: LGTM on the early stopping configuration.

The early stopping configuration is correctly conditioned on the presence of learning_rate_schedule and properly maps all required parameters.

sleap_nn/config/model_config.py (1)

837-845: Good documentation and parameter validation

The function is well-documented with clear docstring and parameter descriptions. The mapping functionality should help with backward compatibility for legacy configurations.

.get("backbone", {})
.get("unet", {})
.get("stacks", 1),
# convs_per_block=2,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Verification agent

🧩 Analysis chain

Commented convs_per_block parameter

The convs_per_block parameter is commented out. Should this be mapped from the legacy configuration or always set to a default value? If it should be mapped, uncomment and provide the correct mapping.


🏁 Script executed:

#!/bin/bash
# Check if convs_per_block was a configurable parameter in legacy configs
rg -i "convs_per_block" --type py | grep -v "model_config.py"

Length of output: 4207


Action Required - Map the Legacy convs_per_block Parameter Correctly
Based on the legacy configuration and tests, the convs_per_block parameter is indeed expected to be configurable (with a common default of 2). Please update the mapping in sleap_nn/config/model_config.py so that if a user provides convs_per_block in their configuration it is picked up; otherwise, it should default to 2. For example, replace the commented line with something like:

convs_per_block = config.get("convs_per_block", 2)
  • Location: sleap_nn/config/model_config.py (around line 884)
  • Action: Uncomment the parameter and map it appropriately from the legacy configuration.

Comment on lines +837 to +1018
else None
),
centroid=(
CentroidConfig(
confmaps=CentroidConfMapsConfig(
anchor_part=legacy_config.get("model", {})
.get("heads", {})
.get("centroid", {})
.get("anchor_part"),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("centroid", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("centroid", {})
.get("output_stride", 1),
)
)
if legacy_config.get("model", {}).get("heads", {}).get("centroid")
else None
),
centered_instance=(
CenteredInstanceConfig(
confmaps=CenteredInstanceConfMapsConfig(
anchor_part=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("anchor_part"),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("output_stride", 1),
part_names=legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance", {})
.get("part_names", None),
)
)
if legacy_config.get("model", {})
.get("heads", {})
.get("centered_instance")
else None
),
bottomup=(
BottomUpConfig(
confmaps=BottomUpConfMapsConfig(
loss_weight=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("confmaps", {})
.get("loss_weight", None),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("confmaps", {})
.get("sigma", 5.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("confmaps", {})
.get("output_stride", 1),
part_names=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("confmaps", {})
.get("part_names", None),
),
pafs=PAFConfig(
edges=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("pafs", {})
.get("edges", None),
sigma=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("pafs", {})
.get("sigma", 15.0),
output_stride=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("pafs", {})
.get("output_stride", 1),
loss_weight=legacy_config.get("model", {})
.get("heads", {})
.get("multi_instance", {})
.get("pafs", {})
.get("loss_weight", None),
),
)
if legacy_config.get("model", {}).get("heads", {}).get("multi_instance")
else None
),
),
)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Verification agent

🧩 Analysis chain

Consider adding support for other backbone types

Currently, the function only handles UNet backbones but doesn't have logic for other backbone types like ConvNext or SwinT that might have been in legacy configurations. Consider adding support for these if they were present in legacy configurations.

To verify whether other backbones were used in legacy configurations, you could check for their presence in the code:


🏁 Script executed:

#!/bin/bash
# Search for any mentions of convnext or swint in legacy config handling
rg -i "backbone.*conv|conv.*backbone|backbone.*swin|swin.*backbone" --type py

Length of output: 6718


Enhance the model_mapper function to support additional backbone types

The current mapping only handles the UNet backbone configuration. However, our search results show that the codebase (including tests and training/inference modules) references other backbone types—specifically, convnext and swint. To ensure consistency with how these backbones are used throughout the project, please consider adding corresponding mapping logic for them in the BackboneConfig.

  • In sleap_nn/config/model_config.py (lines 837-1018), the mapper currently checks for a legacy unet configuration but leaves placeholders (and comments) for convnext and swint.
  • The grep output confirms that these backbones are used in multiple files (e.g., sleap_nn/train.py, sleap_nn/inference/predictors.py, and various tests).
  • Consider introducing conditional logic that inspects the legacy configuration for keys corresponding to convnext and swint and maps them to the appropriate configuration classes (e.g., ConvNextConfig and SwinTConfig).

@@ -184,4 +184,137 @@ class DataConfig:
preprocessing: PreprocessingConfig = field(factory=PreprocessingConfig)
use_augmentations_train: bool = False
augmentation_config: Optional[AugmentationConfig] = None
skeletons: Optional[dict] = None
skeletons: Optional[list] = None
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Verification agent

🧩 Analysis chain

Verify type change from dict to list for skeletons

The type of skeletons attribute has been changed from Optional[dict] to Optional[list], but the function still retrieves it as if it were a dictionary structure from the legacy configuration. Ensure this change is intentional and compatible with how skeletons are used elsewhere in the codebase.

Run the following to check how skeletons are used elsewhere:


🏁 Script executed:

#!/bin/bash
# Check the structure of skeletons and where it's used in the codebase
rg -A 5 -B 5 "skeletons" --type py | grep -v "Optional\[list\]" | grep -v "Optional\[dict\]"

Length of output: 65229


Mismatch between declared type and legacy usage for skeletons

Our verification shows that many parts of the codebase—including tests such as in tests/config/test_data_config.py and functions like get_skeleton_from_config in sleap_nn/inference/utils.py—continue to treat the skeleton configuration as a dictionary (e.g., by accessing keys or iterating over items). The type annotation change in sleap_nn/config/data_config.py (line 187):

    skeletons: Optional[list] = None

introduces an inconsistency. Please confirm whether the intent is to switch to a list-based representation. If so, the legacy retrieval logic and downstream usage must be updated accordingly. If not, revert the type annotation to reflect the expected dictionary format.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant